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Recently, Amabili (1997, 1999), Amabili et al. (1998), Gonialves & Ramos (1996), Chiba
(1993, 1995) and Chiba & Osumi (1998) solved vibration of plates and shells coupled with
sloshing, quiescent and inviscid liquid by inserting the sloshing condition into the eigen-
value problem. In their formulation, all the authors cited obtained an eigenvalue problem
for non-symmetric matrices for which the problem of the existence of complex eigenvalues
arises. As a matter of fact a general criterion for the reality of the eigenvalues does not exist,
while for symmetric matrices this property is always veri"ed.

However, di!erent variational approaches developed for Finite Element codes obtain
eigenvalue problems for symmetric matrices (e.g., Balendra et al. 1981; Zienkiewicz
& Taylor 1991; Morand & Ohayon 1995) that give real eigenvalues. The aim of the present
letter is to clarify this apparent contradiction.

Using the analysis and the symbols introduced by Amabili (1997), for the vibration of
a thin-walled structure coupled to a sloshing, incompressible and inviscid #uid, the
Galerkin equation reads as follows:
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where q and h are the generalized coordinates obtained by the discretization of the system.
In equation (1), the vector q is associated with bulging modes and the vector h with sloshing
modes. Bulging and sloshing modes are coupled by the matrices M

S
and K

1
. In particular,

M
S
is the added mass matrix associated with the reference kinetic energy due to the sloshing

of the #uid and it is given by
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The matrices K
1
, K

2
and M
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come from the vectorial form of the sloshing equation that is

inserted in the eigenvalue problem. In particular, all the terms of the sloshing equation can
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be multiplied by o
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S
dS and integrated over the free surface S
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in order to give an algebraic

equation. This operation gives
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Equation (1) gives an eigenvalue problem for a real, nonsymmetric matrix. The same
Galerkin equation was obtained by Gonc7 alves & Ramos (1996), using the Galerkin method,
and by Amabili (1999) and Amabili et al. (1998) by using the Rayleigh}Ritz method. Chiba
(1993, 1995) and Chiba and Osumi (1998) obtained another nonsymmetric Galerkin
equation. It can easily be shown that equation (1) can give complex eigenvalues. Let us
consider for simplicity the case when only one sloshing and one bulging mode are retained
in the Rayleigh}Ritz expansion. In this case the eigenvalue problem has dimension 2]2
and has complex conjugate eigenvalues when
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In equation (4) u2
B
"K/(M#M

a
) is the squared radian frequency of the bulging mode

neglecting free surface waves and u2
S
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2
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is the squared radian frequency of the

sloshing mode in the rigid tank.
The question of complex eigenvalues is actually a false problem. In fact, it can be proved
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In the particular case of dimension 2, we can see that condition (5) is in contradiction with
relation (4) and the existence of complex eigenvalues is completely excluded. Equation (5)
allows simpli"ed computations of the matrix coupling the sloshing and bulging modes.
Both the expressions for M

S
and K

1
can be used; however, the simplest one, which depends

on the problem under investigation, will be used here. Equation (5) is equivalent to
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The property expressed by equation (6) is a direct consequence of the following relationship
between two distinct modes of the irrotational #uid:
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where L< indicates the boundary of the #uid volume and U
S

is taken for / and U
B

for /@,
which is a straightforward application of Green's theorem. Equation (6) is immediately
obtained from equation (7) as a consequence of the fact that ::
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boundary conditions assumed by Amabili (1997).
By using equation (5), equation (1) can be transformed into a Galerkin equation for

symmetric matrices with simple manipulations (Balendra et al. 1982). The "nal Galerkin
equation for symmetric matrices is
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In conclusion, real eigenvalues u2
r

are associated with equation (1). The advantages of
equation (5) are evident. Details of the present analysis will be given in a subsequent paper
(Amabili 2000).
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